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NOMENCLATURE 

(1. radius of the porous cylinder; 
a,,b,,c,d,. coefficients in the asymptotic expansions of 

the temperature field ; 
cl.3 outer expansion of velocity ; 
k dimensionless permeability ; 
k’, physical permeability ; 
N, Nusselt number; 

9 1 dimensionless velocity vector, q’jU , ; 
r, radial coordinate in physical space normalized 

with a; 

R, Reynolds number, U , u/v; 
to/t 1 : temperature at the wall and at infinity, 

respectively ; 
T, dimensionless temperature ; 
-x, inner variable, Y/u; 
Y’, physical distance. 

Greek symbols 

6,. A.. asymptotic sequences in the temperature 
expansions; 

8. asymptotic sequence in the velocity expansion ; 
P. outer variable, Rr ; 
0. Prandtl number; 
v, kinematic viscosity. 

1. INTRODUCTION 

HEAT transfer in porous media is of growing interest because 
of applications in geometrical reservoirs and in thermal 
recovery processes. The theoretical and experimental studies 
concerning heat transfer from impervious bodies, in a uniform 
fluid stream, have been summarized in detail by Heiber and 
Gebhart [I]. However, there is neither experimental nor 
analytical information available for heat transfer between a 
permeable cylinder and a moving stream in which it is 
immersed. The present results are the first calculation of heat 
transfer from a porous permeable cylinder. The flow field was 
determined by Shi and Braden [2]. 

The effect of permeability on the steady heat transfer from 
an isothermally heated porous circular cylinder is calculated 
under the assumption of a Reynolds number, R < 1. The 
matched asymptotic method of solution is used for both 
conditions analyzed here, that is, a moderate and a large 
Prandtl number. The velocity field used in the energy 
equation was that determined in ref. [2]. The numerical 
values of the average Nusselt number are determmed for 
different levels of permeability li. 

2. FORMULATION 

These calculations concern a long heated isothermal 
porous circular cylinder at r,, placed normal to a uniform 
stream at f , , moving at the speed U , The x-axis is taken in 
the flow direction of the uniform stream. The properties of the 
fluid are taken as constant. The viscous dissipation, pressure 
energy and buoyancy terms are neglected. The resulting 
energy equation in the outside Newtonian region is 

Vf = oRq.grad T 

with the appropriate boundary conditions 

(la) 

T=latr=l, (lb) 

T+Oasr+ T_ (lc) 

where T is the dimensionless temperature T = (t - t , )/(t,, - 
f , ), f, and t , are the temperatures at the surface and at great 
distance, respectively, r is the radial coordinate non- 
dimensionalized with respect to the radius CJ and R = U , u,/v. 

v;z!A+!“+L& 
r ?r 

The velocity-field and resulting streamlines in the fluid are 
first calculated from the results of Shi and Braden [2]. The 
velocity is 

q = i + ,:q,(.xi) - k,V ; + O(r:‘) 
iI 

where i is the unit vector along the x-axis and 

1 
i: = asymptotic sequence = 

k, + ln [4/W)] 

Here k, = l/2 + k is the dimensionless permeability k = 
k’/d and In ‘; = Euler’s constant r 0.577. The function yl(“,) 
is 

yI(xi) = - 2i exp 
pc0se 

C 1 
- k,(t/2p) 

2 

+ 2V [exp 
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where p = Rr = outer (or Oseen) variable and 0 is the 
angular coordinate measured from the downstream direc- 
tion. The above expression of the velocity distribution is 
uniformly valid everywhere outside the cylinder. Inside the 
porous cylinder, it is given by 

q = 2(c + a, c3) ki + 0 (c4) 

where a2 = - 0.87. 
On the basis of the above velocity field, the flow patterns in 

and around the permeable cylinder in the Stokes region are 
computed in detail. The particular streamline which is 
composed of the two radial lines B = 0 and 0 = K, is denoted 
by II, = 0. Then, in the external Stokes region, the general 
equation of the streamlines, to the order of the present 
analysis, is expressed as 

+ (k,/?)] sin 0 = const. 

Interior to the cylinder, in the Darcy region, it is given by 

$ (r, 0) = 2r ~(1 + a2 s’)k sin 0 = const. 

In the Osecn region the stream function is that of a uniform 
stream perturbed by terms of [O(In R)- ‘1. In the half-field of 
flow above (or under) the central streamline, II, = 0, the last 
streamline “touching” the cylinder is found to be 

IJ? = 2kc(l + (12 r?). 

The nature of the flow is visualized in Fig. 1, where various 
streamlines have been plotted, for R = 0.2 and k = 2.5. It is 
seen that the flow is perpendicular at the surface of the 
permeable cylinder, a consequence of the zero tangential 
component condition. Then, inside, streamlines are simply 
parallel to the x-axis. The discontinuity of the first derivative 
of the stream function at the boundary is due to the discon- 
tinuity of the tangential velocity. This arises due to the lower 
order of the empirical Darcy’s law governing the flow inside 
the porous media, compared to the NavierStokes equations 
which are used outside of the cylinder. 

In the analysis of the flow of a viscous fluid past a porous and 
permeable body, the problem of specifying the appropriate 
boundary conditions at the interface has not yet been op- 
timally resolved. Most workers consider the continuity of 
only the normal component of velocity [337]. Some, in 
studies of thermal convective instability in porous media [8, 
91, have included the inertia term y. Vq. This term raises the 

order of the Darcy equation. However, as pointed out by Beck 
[lo], this leads to an underspecified system, ifonly the normal 
component of the velocity on the boundary is prescribed. On 
the other hand, the system becomes overspecified if the 
tangential velocity is also prescribed. This ambiguity of 
appropriate boundary conditions can only be resolved by 
further experimentation in such flows, 

3. RESULTING TEMPERATURE DISTRIBUTION 

Heat transfer for both moderate and high Prandtl number 
fluids has been analyzed. For the latter, the analysis is highly 
simplified by making (3 = R-” where G( is then subsequently 
determined from the Prandtl and Reynolds numbers. From 
the analysis of Hieber and Gebhart [l], it is found that, in the 
Oseen thermal region, the leading term of the velocity field is 
(I - a) U X,. This yields an “effective Reynolds Number” 
(1 - a) R, where 0 < a < 1. For 0 5 1, the temperature field is 
assumed to be represented by the following inner and outer 
expansions : 

T(r. 0) = 1 h,(R) T, (r, 0), R IO, r fixed (2) 
n=0 

T(p, 0) = i A,(R) T, (P, 6) R 10, P fixed (3) 
n=0 

6 A 
where lim * = 0, lim 2 = 0 

K-O 6, R-O A. 

Substitution of the Stokes and Oseen variables into the 
energy equation yields to, respectively 

Vr2 T = uR q, g + qng 

and 

V$T=o (5) 

The construction of the solution is analogous to that given 
in ref. [I]. From the same matching considerations it is found 
that the structure of the temperature expansions (2) and (3) is 
similar to the corresponding ones for the non-porous cylinder 

Y 

t 

FK;. 1. Calculated streamlines past a porous circular cylinder of permeability k = 2.5, at Reynolds number R 
= 0.2. In the half-field of flow above (or under) the central streamline $ = 0, they correspond respectively to 

$ = 0.20, 0.40, 0.60, 0.80, 0.895 and 1.25. 
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problem. The inner expansion of T (r, 0) is expressed as 

x 

T(r, 8) - 1 - A - c c,(u, k) A” 
J I 

In r, r fixed, R 10 (6) 

where 

and 

c, (u, k) = constants, 

functions of the permeability, to be determined (cf. Appen- 
dix 1). The outer expansion of T(p, 0) is given as 

T(p, 0) L AT,+ A’T, + O(In R)-’ p fixed, R10 (8) 

where 

T, = exp (up cos 0)/2 k, (ap)/2. 

Because of the method of matched asymptotic expansions, 
T, need not be expressed explicity. Only its behavior asp goes 
to 0, that is, in the matching region, must be obtained. This 
permits evaluation of the constant cj(u, k). 

For the high Prandtl number fluid, it may be shown that 
the new “Oseen” variable is 

Using the same expressions for the temperature as in 
equations (2) and (3), the resulting analysis parallels that for u 
near 1. The temperature distributions in the thermal Oseen 
and Stokes regions are, respectively, 

T(b, 0) c 4 $, + 4’ i, + O(@), r5 fixed, u = Rm”, R J 0 

(9) 

T(r. 0) 2 1 - 4 - i d,(r, k) 4” 
3 

Inr,rtixed,u=R-‘,RJO (10) 

where 

i, = exp (l/2 up cos 8) k, [l/2 (1 - a)p], 

4 -1 

’ = In (1 - r)Q,,,, I 

The coefficients d, (u, k) are functions of the permeability k. 
(cf. Appendix 1). 

4. AVERAGE NUSSELT NUMBER 

The main interest here is the average Nusselt number N. It 
is obtained from equation (6), for a moderate Prandtl 
number, and from equation (10) for a high Prandtl number. 
Recall that 

dt?. 

I , 
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FIG. 2. Effect of permeability k on Nusselt number N as a function of Reynolds number R for a porous 
cylinder in air (a = 0.72). The dashed line curve corresponds to the results of Hieber and Gebhart for 

nonporous cylinder. 



1. 

,’ 
C. A. Hieber and B. Gebhart, Low Reynolds number heat 
transfer from a circular cylinder, J. Fluid Mech. 32,21-28 

./ (1968). 
0.20 I I I I 1 2. 
0.002 

Y. Y. Shi and R. E. Braden, Jr., The effect of permeability 
0.005 0.01 0.02 0.05 0.1 on low Reynolds number flow past a circular porous 

R cylinder in Deuelop. Theoret. Appl. Mech. (Edited by 
W. A. Shaw) Vol. 3, pp. 761-775. Pergamon Press, 

FIG. 3. Effect of permeability k on Nusselt number N for a 
Oxford (1966). 

3. 
porous cylinder in water (cr = 6.82). 

M. P. Singh and J. L. Gupta, The effect of permeability on 
the drag of a porous sphere in a uniform stream, 2. 

For moderate (I Anaew. Math. Mech. 51. 27732 (1971). 
4. M.-P. Singh and J. L. Gupta, The flow of a viscous fluid 

1 r a,(u) 1 past an inhomogeneous porous cylinder, Z. Angew. 

N? 
In [4/(&u)] 1’ - k, + Ini4/(ycrR)] 1 

Math. Mech. 51, 17-25 (1971). 
5. D. D. Joseph and L. N. Tao, The effect of permeability on 

+ 0(InR)-4R10. (11) 
the slow motion of a porous sphere in a viscous fluid, Z. 
Angew. Math. Mech. 44, 361-364 (1964). 

For high 0 
6. S. Swarup, Heat transfer from a porous sphere in low 

Reynolds number flow, Z. Angew. Math. Phys. 29, 

1 1477156 (1978). 
N- 

In [4/yuR (1 - x)] 
7. S. Swarup and P. S. Manocha, The transverse force on a 

spinning porous sphere at small Reynolds number, Z. 
Angew. Math. Ph& 30, 526-530 (1979). 

’ 

Ux) 
I 

8. 

- k,, + [ln(4/ga(l - a)R)] [In (4/yu(l - a)R] 

J. P. Caltagirone, Thermoconvective instabilities in a 
horizontal porous layer, J. Fluid Mech. 72, 269-287 

+ O(lnR))“, RIO (12) 
(1975). 

9. R. S. Wu, K. C. Cheng and A. Craggs, Convective 

where u3(u) and b,(a) are the same as obtained in ref. [I]. 
instability in porous media with maximum density and 

The resulting effect of permeability on the forced heat throughflow effects by finite-difference and finite-element 

convection from a porous circular cylinder in air (a = 0.72) is method, Numer. Heat Transfer 2, 303-318 (1979). 

shown in Fig. 2. It is observed that N increases as the 10. J. L. Beck, Convection in a box of porous material 

permeability k increases. However, for R very small the effect saturated with fluid, Phys. Fluids IS, 137771383 (1972). 

is seen to become very small. High Prandtl number results are 
seen in Fig. 3, for u = 6.82. The effect ofpermeability is much 

APPENDIX 1 

less over the whole range. I/&es of cs(u, k) and d, (a, k) 
No experimental data has been found for such heat 

transfer. By making k zero in equations (11) and (12) the Equation for T, is written as 

results of Hieber and Gebhart should be recovered. The 
resulting disagreement (Fig. 2) is due to the fact that they have 
approximated l/2 + In [4/(yuR)], as In [4/(yuR)] in the V: T, = i. grad T, + & g,(q) - k,V(x/r’) ‘grad T, 
determination of 7, (p, 6). 0 

5. CONCLUSIONS we let T,(p, 0) = exp [(up cos 0)/z] F(p, 0). 

The above results show the considerable effects on heat 
transfer of submerged surface permeability. These arise even 

The equation becomes 

in the highly viscous flows over cylinders of small diameter. (v; - l/4 02) F =f(p, 0) 

Such a penetration would appreciably increase, for example, 
the melting rate of a rod of ice immersed in flowing water at a 
temperature above the melting point. Such a multiple region 
flow would arise with any fragmented immersed solid. In a 
melting process, the isothermal condition assumed above is 
appropriate. 

The Nusselt number curves for several values of k, in Figs. 2 

and 3, indicate that the value of N for water is again much 
larger than that for air even with a permeable surface. The 
Nusselt number also increases with increasing permeability, 
in both fluids. This results from the increased thinnina of the 
thermal region and steepening of the temperature gradient, 
because of the flow of fluid into the cylinder. The later 
crossing seen at higher R, for u = 6.82, apparently arises 
from a complicated interaction of several effects. 
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where 

f(p, 0) = u2 pcos 0 k, (up/2 - k,) 
1 +Ak, 

r? 
+ 112 (1 + Ak,) exp 

p cos 0 
2 k, (42) k, (42) 

- cos 0 k, (l/2 P) k, (UP/~) - k, (p/2) k, (UP/~) 

2 
+ ~ cos 0 k, (u/42) - k, (UP/~) 

(1 + Ak,,) 

k, -(Rlp)2 cos 2 0 k, @p/2) 
+ (1 + Ak,) 

- cos 0 k, (~42). 

Solving the equation by Green’s function method, we have the 
appropriate Green’s function 

therefore b,(a) are computed in ref. [l]. 
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T 

J‘J 
277 

T,(p=O) = F(p, 0) = G(0, p’)S(p’. 0’) p’dp’d0’. 
0 0 

Note that the contribution of the term inf(p’, 0’) 

$& (RIP'Y cos 20’k, (1,‘2 up’) 

- cos 8’ k, (l/2 up’) k,, (l/2 up’) 

to the integral is zero. 

After rearrangement, it is found that 

Q3(U) 
c3(u, k) = ~ 

1 + Ak,, 

where a3(u = 0.72) = 1.38 (ref. [l]). 

Similarly, for the high Prandtl number theory, 

b,(4 
d,(u, k) = -. 

I + Ak,, 
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NOMENCLATURE 

Q? heat transfer parameter; 

f, time ; 
T W? wall temperature (for t < 0); 

T0, ambient temperature ; 
k Darcy’s law velocity in the x-direction ; 
4 Darcy’s law velocity in the Y-direction ; 
X, (non-dimensional) coordinate along the wall ; 

Y, (non-dimensional) coordinate normal to the wall. 

Greek symbols 
I 12 

Y/X > 
(non-dimensional) temperature; 
stream function ; 
Y/2P; 
t/x. 

INTRODUCTION 

HEAT transfer from a surface embedded in a porous medium 
through which a liquid is flowing is of great practical 
importance in many branches of engineering. For example, 
convective flows in porous medium are of considerable 
interest because of the present and potential use of geother- 
mal energy for power production. The basic theory and much 
of the previous work in this area is to be found in an extensive 
review article [l]. Of particular interest in this context are 
flows near impermeable surfaces (intrusives or boundaries of 
the porous medium) at high Rayleigh numbers, where the 
boundary-layer approximations can be made. The basic 
solution for a vertical flat surface has been given [2] and was 
later extended to a boundary of arbitrary shape [3]. The 
boundary layer studies described [l] have all been concerned 
with steady flow configurations. No work has yet been done 
on how such flows could be set up from some given initial 
state. The purpose of this paper is to present solutions of the 


