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NOMENCLATURE

7 radius of the porous cylinder;

anb,.c.d, coefficients in the asymptotic expansions of
the temperature field;

s outer expansion of velocity;

k, dimensionless permeability ;

K, physical permeability ;

N, Nusselt number;

q ., dimensionless velocity vector, ¢'/U | ;

r, radial coordinate in physical space normalized
with a;

R, Reynolds number, U ,a/v;

tolt, temperature at the wall and at infinity,
respectively ;

T, dimensionless temperature ;

X, inner variable, x'/a;

X', physical distance.

Greek symbols

O Aps asymptotic sequences in the temperature
expansions;

& asymptotic sequence in the velocity expansion ;

0, outer variable, Rr;

g, Prandtl number;

v, kinematic viscosity.

1. INTRODUCTION

HeaT transfer in porous media is of growing interest because
of applications in geometrical reservoirs and in thermal
recovery processes. The theoretical and experimental studies
concerning heat transfer from impervious bodies, in a uniform
fluid stream, have been summarized in detail by Heiber and
Gebhart [1]. However, there is neither experimental nor
analytical information available for heat transfer between a
permeable cylinder and a moving stream in which it is
immersed. The present results are the first calculation of heat
transfer from a porous permeable cylinder. The flow field was
determined by Shi and Braden [2].

The effect of permeability on the steady heat transfer from
an isothermally heated porous circular cylinder is calculated
under the assumption of a Reynolds number, R < 1. The
matched asymptotic method of solution is used for both
conditions analyzed here, that is, a moderate and a large
Prandtl number. The velocity field used in the energy
equation was that determined in ref. [2]. The numerical
values of the average Nusselt number are determined for
different levels of permeability k.

2. FORMULATION

These calculations concern a long heated isothermal
porous circular cylinder at 1, placed normal to a uniform
stream at t , moving at the speed U ,. The x-axis is taken in
the flow direction of the uniform stream. The properties of the
fluid are taken as constant. The viscous dissipation, pressure
energy and buoyancy terms are neglected. The resulting
energy equation in the outside Newtonian region is

VZ=0oRq-grad T (la)

with the appropriate boundary conditions
T=latr=1, (1b)
To>0asr— =« (1¢)

where T is the dimensionless temperature T = (¢t — 1, )/(t, —
t,)toand ¢, are the temperatures at the surface and at great
distance, respectively, r is the radial coordinate non-
dimensionalized with respect to the radiusaand R = U , a/v.
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The velocity-field and resulting streamlines in the fluid are

first calculated from the results of Shi and Braden {2]. The
velocity is

X

q=i+egx;)— kOV< 2>+ 0(&%)
r

where i is the unit vector along the x-axis and

1

& = asymptotic sequence = ————————
ko + In[4/GR)]

Here k, = 1/2 + k is the dimensionless permeability k =
k'/a* and Iny = Euler’s constant ~ 0.577. The function ¢,(x;)
is

) pcosf
gi(x;) = — 2i exp <~—2—)ko(l/2p)

cosf
+ 2V [exp <p

>+ ko(1/2p) + Inp]
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where p = Rr = outer (or Oseen) variable and 0 is the
angular coordinate measured from the downstream direc-
tion. The above expression of the velocity distribution is
uniformly valid everywhere outside the cylinder. Inside the
porous cylinder, it is given by

q=2c+a,e) ki + 0

where a, = — 0.87.

On the basis of the above velocity field, the flow patterns in
and around the permeable cylinder in the Stokes region are
computed in detail. The particular streamline which is
composed of the two radial lines § = 0 and § = =, is denoted
by ¢ = 0. Then, in the external Stokes region, the general
equation of the streamlines, to the order of the present
analysis, is expressed as

yir, ) =re[i+a,e’][kog—1+Inr
+ (ko/r®)] sin & = const.
Interior to the cylinder, in the Darcy region, it is given by
Y (r. 0) =2re(l + a, %)k sin @ = const.

In the Oseen region the stream function is that of a uniform
stream perturbed by terms of [O(In R)™']. In the half-field of
flow above (or under) the central streamline, = 0, the last
streamline “touching” the cylinder is found to be

= 2ke(l + a, e?).

The nature of the flow is visualized in Fig. 1, where various
streamlines have been plotted, for R = 0.2and k = 2.5. It is
seen that the flow is perpendicular at the surface of the
permeable cylinder, a consequence of the zero tangential
component condition. Then, inside, streamlines are simply
parallel to the x-axis. The discontinuity of the first derivative
of the stream function at the boundary is due to the discon-
tinuity of the tangential velocity. This arises due to the lower
order of the empirical Darcy’s law governing the flow inside
the porous media, compared to the Navier-Stokes equations
which are used outside of the cylinder.

In the analysis of the flow of a viscous fluid past a porous and
permeable body, the problem of specifying the appropriate
boundary conditions at the interface has not yet been op-
timally resolved. Most workers consider the continuity of
only the normal component of velocity [3-7]. Some, in
studies of thermal convective instability in porous media [8,
91, have included the inertia term g. Vq. This term raises the
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order of the Darcy equation. However, as pointed out by Beck
[10], this leads to an underspecified system, if only the normal
component of the velocity on the boundary is prescribed. On
the other hand, the system becomes overspecified if the
tangential velocity is also prescribed. This ambiguity of
appropriate boundary conditions can only be resolved by
further experimentation in such flows.

3. RESULTING TEMPERATURE DISTRIBUTION

Heat transfer for both moderate and high Prandtl number
fluids has been analyzed. For the latter, the analysis is highly
simplified by making 6 = R™* where « is then subsequently
determined from the Prandtl and Reynolds numbers. From
the analysis of Hieber and Gebhart [1], it is found that, in the
Oseen thermal region, the leading term of the velocity field is
(1 — «) U,. This yields an “effective Reynolds Number”
(1 — «)R,where 0 < a < 1. Foro ~ 1, the temperature field is
assumed to be represented by the following inner and outer
expansions:

T(r,0) = i S(R)T, (r, 8),R|0,r fixed (2)
n=0

T(,0)= ¥ ARIT, (0, 0)RI0, pfixed  (3)
n=0

A

. +1 . +1

where lim ~~— =0, lim —— = 0.
R—0 n R—-0 n

Substitution of the Stokes and Oseen variables into the
energy equation yields to, respectively

VT < or (4, L 4 0, @
TR or qer&()

and
Vo' T LI )
PPT=0(4 7+ 5]

The construction of the solution is analogous to that given
in ref. [1]. From the same matching considerations it is found
that the structure of the temperature expansions (2) and (3) is
similar to the corresponding ones for the non-porous cylinder

F1G. 1. Calculated streamlines past a porous circular cylinder of permeability k = 2.5, at Reynolds number R
= 0.2.In the half-field of flow above (or under) the central streamline y = 0, they correspond respectively to
¥ = 0.20, 0.40, 0.60, 0.80, 0.895 and 1.25.
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problem. The inner expansion of T (r, 8) is expressed as

T(r.6) ~ 1 — [A - i ¢,(o, k) A"]

3

Inr, r fixed, R|O (6)

where

-1
— 7
=) m

4
A=<ln

and
¢, (o, k) = constants,

functions of the permeability, to be determined (cf. Appen-
dix 1). The outer expansion of T(p, ) is given as

T(p, 0) ~ AT+ A’T, + O(Iln R)™3 p fixed, R|0 (8)

where
T, =exp (op cos 8)/2 kg (6p)/2.
Because of the method of matched asymptotic expansions,
T need not be expressed explicity. Only its behavior as p goes

to 0, that is, in the matching region, must be obtained. This
permits evaluation of the constant c,(a, k).

For the high Prandtl number fluid, it may be shown that
the new “Oseen” variable is

p=rR'2

0.2
003 0.04

0.086 0.1
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Using the same expressions for the temperature as in
equations (2) and (3), the resulting analysis parallels that for &
near 1. The temperature distributions in the thermal Oseen
and Stokes regions are, respectively,

T, 0y~ ¢ Ty + ¢* T\ + O(¢?), p fixed, 0 =R %, R} 0O
©

T 0y~ 1 <¢ Yy k) ¢">
3

Inr,rfixed co=R™*,R|0 (10)
where

To = exp (1/2 ap cos 0) ko [1/2 (1 — @) p],

-1
¢ =In [~—4~ }
(1 — a)Ryo

The coefficients d, (o, k) are functions of the permeability k.
(cf. Appendix 1).

4. AVERAGE NUSSELT NUMBER

The main interest here is the average Nusselt number N. It
is obtained from equation (6), for a moderate Prandtl
number, and from equation (10) for a high Prandtl number.
Recall that

1 e
N=—— (i dé.
2n Jo \Or Jo_;

0.2 0.4 0.6 0.8
R

Fic. 2. Effect of permeability k on Nusselt number N as a function of Reynolds number R for a porous
cylinder in air (¢ = 0.72). The dashed line curve corresponds to the results of Hieber and Gebhart for
nonporous cylinder.



Shorter Communications

035

N
0.25
0.20
0.002 0.005 0.01 0.02 0.05 0.1
R

FiG. 3. Effect of permeability k on Nusselt number N for a
porous cylinder in water (¢ = 6.82).

For moderate ¢

_ a,(o) :|
ko, + In[4/(yoR)]

+0(nR)"*R]0.

1
N~ 1
In [4/(Rya)] [
11
For high o

1
N~ In[4/yoR (1 — )]

1— b3(x) }
ko + [In(4/ya(1 — 2)R)][In (4/ya(1l — )R]

+O(InR)™*, R0 (12)
where a,(0) and b;(«) are the same as obtained in ref. [1].

The resulting effect of permeability on the forced heat
convection from a porous circular cylinder in air (¢ = 0.72)is
shown in Fig 2. It is observed that N increases as the
permeability k increases. However, for R very small the effect
is seen to become very small. High Prandtl number results are
seen in Fig. 3, for o = 6.82. The effect of permeability is much
less over the whole range.

No experimental data has been found for such heat
transfer. By making k zero in equations (11) and (12), the
results of Hieber and Gebhart should be recovered. The
resulting disagreement (Fig. 2)is due to the fact that they have
approximated 1/2 + In [4/(yoR)], as In [4/(yoR)] in the
determination of T, (p, 8).

5. CONCLUSIONS

The above results show the considerable effects on heat
transfer of submerged surface permeability. These arise even
in the highly viscous flows over cylinders of small diameter.
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Such a penetration would appreciably increase, for example,
the melting rate of a rod of ice immersed in flowing water at a
temperature above the melting point. Such a multiple region
flow would arise with any fragmented immersed solid. In a
melting process, the isothermal condition assumed above is
appropriate.

The Nusselt number curves for several values of k, in Figs. 2
and 3, indicate that the value of N for water is again much
larger than that for air even with a permeable surface. The
Nusselt number also increases with increasing permeability,
in both fluids. This results from the increased thinning of the
thermal region and steepening of the temperature gradient,
because of the flow of fluid into the cylinder. The later
crossing seen at higher R, for ¢ = 6.82, apparently arises
from a complicated interaction of several effects.
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APPENDIX 1
Values of ¢4(6, k) and d, (0, k)

Equation for T, is written as

V2T, =i grad T, + 91(x) = ko V(x/r?) -grad T

1 + Ak,

we let T(p, 8) = exp [(op cos 8)/2] F (p, 0).
The equation becomes

(Vi —1/40*)F = f(p, 0)
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where Ti(p=0)=F(p,0 f J G0, p') f(p', 0) p'dp’db".
2
g
flp, 0)= cos 0 ko (ap/2 — ky) _
ko ’ 1 Note that the contribution of the term in f(p', 6")
¢’ p cos
1/2 k 2) k 2 0 "2 , ; )
P A Py R kiten) [ i (R 05 207k, (112 09"
—cos 8 ko (1/2 p) ky (0p/2) — ko (p/2) ko (op/2) —cos 0" k, (12 6p") ko (1/2 6p')

to the integral is zero.
cos 0k (0p/2) — k, (p/2)

(1 + Aky) After rearrangement, it is found that
ky
’(R/p)2 cos 2 0 ko (op/2) as3(0)
k
(1 + Aky) cxlo, k) = 1+ Ak,

—cos 8 k, (op/2).

Solving the equation by Green’s function method, we have the where a(o = 0.72) = 1.38 (ref. [1])

appropriate Green’s function Similarly, for the high Prandtl number theory,
“li=r bt
G(p, p)= — —0 3 .
p, 0y = 3 [ 5 ] dy(o, k) 3 Ak,
therefore by(x) are computed in ref. [1].
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INTRODUCTION
NOMENCLATURE HEAT transfer from a surface embedded in a porous medium
through which a liquid is flowing is of great practical
. heat transfer parameter ; importance in many branches of engineering. For example,
t, time ; convective flows in porous medium are of considerable
T,, wall temperature (for t <0); interest because of the present and potential use of geother-
T,  ambient temperature; mal energy for power production. The basic theory and much
u, Darcy’s law velocity in the x-direction ; of the previous work in this area is to be found in an extensive
v,  Darcy’s law velocity in the y-direction; review article [1]. Of particular interest in this context are
x,  (non-dimensional) coordinate along the wall; flows near impermeable surfaces {intrusives or boundaries of
y,  (non-dimensional) coordinate normal to the wall.  the porous medium) at high Rayleigh numbers, where the
boundary-layer approximations can be made. The basic
Greek symbols solution for a vertical flat surface has been given [2] and was
", i, later extended to a boundary of arbitrary shape [3]. The
8, (non-dimensional) temperature ; boundary layer studies described [ 1] have all been concerned
¥, stream function : with steady flow configurations. No work has yet .beenvd_ope
g, y/2012; on how such flows could be set up from some given initial

h 1/x. state. The purpose of this paper is to present solutions of the



